Kubernetes driver
The Buildx Kubernetes driver allows connecting your local development or CI
environments to your Kubernetes cluster to allow access to more powerful and
varied compute resources.
Synopsis
Run the following command to create a new builder, named
kube
, that uses the
Kubernetes driver:
$ docker buildx create \
--bootstrap \
--name=kube \
--driver=kubernetes \
--driver-opt=[key=value,...]
The following table describes the available driver-specific options that you can
pass to
--driver-opt
:
Parameter
|
Type
|
Default
|
Description
|
image
|
String
|
Â
|
Sets the image to use for running BuildKit.
|
namespace
|
String
|
Namespace in current Kubernetes context
|
Sets the Kubernetes namespace.
|
replicas
|
Integer
|
1
|
Sets the number of Pod replicas to create. See scaling BuildKit
|
requests.cpu
|
CPU units
|
Â
|
Sets the request CPU value specified in units of Kubernetes CPU. For example
requests.cpu=100m
or
requests.cpu=2
|
requests.memory
|
Memory size
|
Â
|
Sets the request memory value specified in bytes or with a valid suffix. For example
requests.memory=500Mi
or
requests.memory=4G
|
limits.cpu
|
CPU units
|
Â
|
Sets the limit CPU value specified in units of Kubernetes CPU. For example
requests.cpu=100m
or
requests.cpu=2
|
limits.memory
|
Memory size
|
Â
|
Sets the limit memory value specified in bytes or with a valid suffix. For example
requests.memory=500Mi
or
requests.memory=4G
|
nodeselector
|
CSV string
|
Â
|
Sets the podâs
nodeSelector
label(s). See node assignment.
|
tolerations
|
CSV string
|
Â
|
Configures the podâs taint toleration. See node assignment.
|
rootless
|
true
,
false
|
false
|
Run the container as a non-root user. See rootless mode.
|
loadbalance
|
sticky
,
random
|
sticky
|
Load-balancing strategy. If set to
sticky
, the pod is chosen using the hash of the context path.
|
qemu.install
|
true
,
false
|
Â
|
Install QEMU emulation for multi platforms support. See QEMU.
|
qemu.image
|
String
|
tonistiigi/binfmt:latest
|
Sets the QEMU emulation image. See QEMU.
|
Scaling BuildKit
One of the main advantages of the Kubernetes driver is that you can scale the
number of builder replicas up and down to handle increased build load. Scaling
is configurable using the following driver options:
-
replicas=N
This scales the number of BuildKit pods to the desired size. By default, it
only creates a single pod. Increasing the number of replicas lets you take
advantage of multiple nodes in your cluster.
-
requests.cpu
,
requests.memory
,
limits.cpu
,
limits.memory
These options allow requesting and limiting the resources available to each
BuildKit pod according to the official Kubernetes documentation
here.
For example, to create 4 replica BuildKit pods:
$ docker buildx create \
--bootstrap \
--name=kube \
--driver=kubernetes \
--driver-opt=namespace=buildkit,replicas=4
Listing the pods, you get this:
$ kubectl -n buildkit get deployments
NAME READY UP-TO-DATE AVAILABLE AGE
kube0 4/4 4 4 8s
$ kubectl -n buildkit get pods
NAME READY STATUS RESTARTS AGE
kube0-6977cdcb75-48ld2 1/1 Running 0 8s
kube0-6977cdcb75-rkc6b 1/1 Running 0 8s
kube0-6977cdcb75-vb4ks 1/1 Running 0 8s
kube0-6977cdcb75-z4fzs 1/1 Running 0 8s
Additionally, you can use the
loadbalance=(sticky|random)
option to control
the load-balancing behavior when there are multiple replicas.
random
selects
random nodes from the node pool, providing an even workload distribution across
replicas.
sticky
(the default) attempts to connect the same build performed
multiple times to the same node each time, ensuring better use of local cache.
For more information on scalability, see the options for
buildx create.
Node assignment
The Kubernetes driver allows you to control the scheduling of BuildKit pods
using the
nodeSelector
and
tolerations
driver options.
The value of the
nodeSelector
parameter is a comma-separated string of
key-value pairs, where the key is the node label and the value is the label
text. For example:
"nodeselector=kubernetes.io/arch=arm64"
The
tolerations
parameter is a semicolon-separated list of taints. It accepts
the same values as the Kubernetes manifest. Each
tolerations
entry specifies a
taint key and the value, operator, or effect. For example:
"tolerations=key=foo,value=bar;key=foo2,operator=exists;key=foo3,effect=NoSchedule"
Due to quoting rules for shell commands, you must wrap the
nodeselector
and
tolerations
parameters in single quotes. You can even wrap all of
--driver-opt
in single quotes, for example:
$ docker buildx create \
--bootstrap \
--name=kube \
--driver=kubernetes \
'--driver-opt="nodeselector=label1=value1,label2=value2","tolerations=key=key1,value=value1"'
The Buildx Kubernetes driver has support for creating
multi-platform images, either using QEMU or by
leveraging the native architecture of nodes.
QEMU
Like the
docker-container
driver, the Kubernetes driver also supports using
QEMU (user
mode) to build images for non-native platforms. Include the
--platform
flag
and specify which platforms you want to output to.
For example, to build a Linux image for
amd64
and
arm64
:
$ docker buildx build \
--builder=kube \
--platform=linux/amd64,linux/arm64 \
-t <user>/<image> \
--push .
Warning
QEMU performs full-system emulation of non-native platforms, which is much
slower than native builds. Compute-heavy tasks like compilation and
compression/decompression will likely take a large performance hit.
Using a custom BuildKit image or invoking non-native binaries in builds may
require that you explicitly turn on QEMU using the
qemu.install
option when
creating the builder:
$ docker buildx create \
--bootstrap \
--name=kube \
--driver=kubernetes \
--driver-opt=namespace=buildkit,qemu.install=true
Native
If you have access to cluster nodes of different architectures, the Kubernetes
driver can take advantage of these for native builds. To do this, use the
--append
flag of
docker buildx create
.
First, create your builder with explicit support for a single architecture, for
example
amd64
:
$ docker buildx create \
--bootstrap \
--name=kube \
--driver=kubernetes \
--platform=linux/amd64 \
--node=builder-amd64 \
--driver-opt=namespace=buildkit,nodeselector="kubernetes.io/arch=amd64"
This creates a Buildx builder named
kube
, containing a single builder node
builder-amd64
. Note that the Buildx concept of a node isnât the same as the
Kubernetes concept of a node. A Buildx node in this case could connect multiple
Kubernetes nodes of the same architecture together.
With the
kube
builder created, you can now introduce another architecture into
the mix using
--append
. For example, to add
arm64
:
$ docker buildx create \
--append \
--bootstrap \
--name=kube \
--driver=kubernetes \
--platform=linux/arm64 \
--node=builder-arm64 \
--driver-opt=namespace=buildkit,nodeselector="kubernetes.io/arch=arm64"
If you list builders now, you should be able to see both nodes present:
$ docker buildx ls
NAME/NODE DRIVER/ENDPOINT STATUS PLATFORMS
kube kubernetes
builder-amd64 kubernetes:///kube?deployment=builder-amd64&kubeconfig= running linux/amd64*, linux/amd64/v2, linux/amd64/v3, linux/386
builder-arm64 kubernetes:///kube?deployment=builder-arm64&kubeconfig= running linux/arm64*
You should now be able to build multi-arch images with
amd64
and
arm64
combined, by specifying those platforms together in your buildx command:
$ docker buildx build --builder=kube --platform=linux/amd64,linux/arm64 -t <user>/<image> --push .
You can repeat the
buildx create --append
command for as many architectures
that you want to support.
Rootless mode
The Kubernetes driver supports rootless mode. For more information on how
rootless mode works, and itâs requirements, see
here.
To turn it on in your cluster, you can use the
rootless=true
driver option:
$ docker buildx create \
--name=kube \
--driver=kubernetes \
--driver-opt=namespace=buildkit,rootless=true
This will create your pods without
securityContext.privileged
.
Requires Kubernetes version 1.19 or later. Using Ubuntu as the host kernel is
recommended.
Example: Creating a Buildx builder in Kubernetes
This guide shows you how to:
-
Create a namespace for your Buildx resources
-
Create a Kubernetes builder.
-
List the available builders
-
Build an image using your Kubernetes builders
Prerequisites:
-
You have an existing Kubernetes cluster. If you donât already have one, you
can follow along by installing
minikube.
-
The cluster you want to connect to is accessible via the
kubectl
command,
with the
KUBECONFIG
environment variable
set appropriately if necessary.
-
Create a
buildkit
namespace.
Creating a separate namespace helps keep your Buildx resources separate from
other resources in the cluster.
$ kubectl create namespace buildkit
namespace/buildkit created
-
Create a new Buildx builder with the Kubernetes driver:
# Remember to specify the namespace in driver options
$ docker buildx create \
--bootstrap \
--name=kube \
--driver=kubernetes \
-
List available Buildx builders using
docker buildx ls
$ docker buildx ls
NAME/NODE DRIVER/ENDPOINT STATUS PLATFORMS
kube kubernetes
kube0-6977cdcb75-k9h9m running linux/amd64, linux/amd64/v2, linux/amd64/v3, linux/386
default * docker
default default running linux/amd64, linux/386
-
Inspect the running pods created by the Buildx driver with
kubectl
.
$ kubectl -n buildkit get deployments
NAME READY UP-TO-DATE AVAILABLE AGE
kube0 1/1 1 1 32s
$ kubectl -n buildkit get pods
NAME READY STATUS RESTARTS AGE
kube0-6977cdcb75-k9h9m 1/1 Running 0 32s
The buildx driver creates the necessary resources on your cluster in the
specified namespace (in this case,
buildkit
), while keeping your driver
configuration locally.
-
Use your new builder by including the
--builder
flag when running buildx
commands. For example: :
# Replace <registry> with your Docker username
# and <image> with the name of the image you want to build
docker buildx build \
--builder=kube \
-t <registry>/<image> \
--push .
Thatâs it! Youâve now built an image from a Kubernetes pod, using Buildx!
Further reading
For more information on the Kubernetes driver, see the
buildx reference.