Multi-platform images
Docker images can support multiple platforms, which means that a single image
may contain variants for different architectures, and sometimes for different
operating systems, such as Windows.
When running an image with multi-platform support,
docker
automatically
selects the image that matches your OS and architecture.
Most of the Docker Official Images on Docker Hub provide a variety of architectures.
For example, the
busybox
image supports
amd64
,
arm32v5
,
arm32v6
,
arm32v7
,
arm64v8
,
i386
,
ppc64le
, and
s390x
. When running this image
on an
x86_64
/
amd64
machine, the
amd64
variant is pulled and run.
Docker is now making it easier than ever to develop containers on, and for Arm
servers and devices. Using the standard Docker tooling and processes, you can
start to build, push, pull, and run images seamlessly on different compute
architectures. In most cases, you donât have to make any changes to Dockerfiles
or source code to start building for Arm.
BuildKit with Buildx is designed to work well for building for multiple
platforms and not only for the architecture and operating system that the user
invoking the build happens to run.
When you invoke a build, you can set the
--platform
flag to specify the target
platform for the build output, (for example,
linux/amd64
,
linux/arm64
, or
darwin/amd64
).
When the current builder instance is backed by the
docker-container
driver,
you can specify multiple platforms together. In this case, it builds a manifest
list which contains images for all specified architectures. When you use this
image in
docker run
or
docker service
, Docker picks
the correct image based on the nodeâs platform.
You can build multi-platform images using three different strategies that are
supported by Buildx and Dockerfiles:
-
Using the QEMU emulation support in the kernel
-
Building on multiple native nodes using the same builder instance
-
Using a stage in Dockerfile to cross-compile to different architectures
QEMU is the easiest way to get started if your node already supports it (for
example. if you are using Docker Desktop). It requires no changes to your
Dockerfile and BuildKit automatically detects the secondary architectures that
are available. When BuildKit needs to run a binary for a different architecture,
it automatically loads it through a binary registered in the
binfmt_misc
handler.
For QEMU binaries registered with
binfmt_misc
on the host OS to work
transparently inside containers, they must be statically compiled and registered
with the
fix_binary
flag. This requires a kernel >= 4.8 and
binfmt-support >= 2.1.7. You can check for proper registration by checking if
F
is among the flags in
/proc/sys/fs/binfmt_misc/qemu-*
. While Docker
Desktop comes preconfigured with
binfmt_misc
support for additional platforms,
for other installations it likely needs to be installed using
tonistiigi/binfmt
image.
$ docker run --privileged --rm tonistiigi/binfmt --install all
Using multiple native nodes provide better support for more complicated cases
that are not handled by QEMU and generally have better performance. You can
add additional nodes to the builder instance using the
--append
flag.
Assuming contexts
node-amd64
and
node-arm64
exist in
docker context ls
;
$ docker buildx create --use --name mybuild node-amd64
mybuild
$ docker buildx create --append --name mybuild node-arm64
$ docker buildx build --platform linux/amd64,linux/arm64 .
Finally, depending on your project, the language that you use may have good
support for cross-compilation. In that case, multi-stage builds in Dockerfiles
can be effectively used to build binaries for the platform specified with
--platform
using the native architecture of the build node. A list of build
arguments like
BUILDPLATFORM
and
TARGETPLATFORM
is available automatically
inside your Dockerfile and can be leveraged by the processes running as part
of your build.
# syntax=docker/dockerfile:1
FROM --platform=$BUILDPLATFORM golang:alpine AS build
ARG TARGETPLATFORM
ARG BUILDPLATFORM
RUN echo "I am running on $BUILDPLATFORM, building for $TARGETPLATFORM" > /log
FROM alpine
COPY --from=build /log /log
Getting started
Run the
docker buildx ls
command
to list the existing builders:
$ docker buildx ls
NAME/NODE DRIVER/ENDPOINT STATUS BUILDKIT PLATFORMS
default * docker
default default running 20.10.17 linux/amd64, linux/arm64, linux/arm/v7, linux/arm/v6
This displays the default builtin driver, that uses the BuildKit server
components built directly into the docker engine, also known as the
docker
driver.
Create a new builder using the
docker-container
driver
which gives you access to more complex features like multi-platform builds
and the more advanced cache exporters, which are currently unsupported in the
default
docker
driver:
$ docker buildx create --name mybuilder --driver docker-container --bootstrap
mybuilder
Switch to the new builder:
$ docker buildx use mybuilder
Note
Alternatively, run
docker buildx create --name mybuilder --driver docker-container --bootstrap --use
to create a new builder and switch to it using a single command.
And inspect it:
$ docker buildx inspect
Name: mybuilder
Driver: docker-container
Nodes:
Name: mybuilder0
Endpoint: unix:///var/run/docker.sock
Status: running
Buildkit: v0.10.4
Platforms: linux/amd64, linux/amd64/v2, linux/amd64/v3, linux/arm64, linux/riscv64, linux/ppc64le, linux/s390x, linux/386, linux/mips64le, linux/mips64, linux/arm/v7, linux/arm/v6
Now listing the existing builders again, we can see our new builder is
registered:
$ docker buildx ls
NAME/NODE DRIVER/ENDPOINT STATUS BUILDKIT PLATFORMS
mybuilder docker-container
mybuilder0 unix:///var/run/docker.sock running v0.10.4 linux/amd64, linux/amd64/v2, linux/amd64/v3, linux/arm64, linux/riscv64, linux/ppc64le, linux/s390x, linux/386, linux/mips64le, linux/mips64, linux/arm/v7, linux/arm/v6
default * docker
default default running 20.10.17 linux/amd64, linux/arm64, linux/arm/v7, linux/arm/v6
Example
Test the workflow to ensure you can build, push, and run multi-platform images.
Create a simple example Dockerfile, build a couple of image variants, and push
them to Docker Hub.
The following example uses a single
Dockerfile
to build an Alpine image with
cURL installed for multiple architectures:
# syntax=docker/dockerfile:1
FROM alpine:3.16
RUN apk add curl
Build the Dockerfile with buildx, passing the list of architectures to
build for:
$ docker buildx build --platform linux/amd64,linux/arm64,linux/arm/v7 -t <username>/<image>:latest --push .
...
#16 exporting to image
#16 exporting layers
#16 exporting layers 0.5s done
#16 exporting manifest sha256:71d7ecf3cd12d9a99e73ef448bf63ae12751fe3a436a007cb0969f0dc4184c8c 0.0s done
#16 exporting config sha256:a26f329a501da9e07dd9cffd9623e49229c3bb67939775f936a0eb3059a3d045 0.0s done
#16 exporting manifest sha256:5ba4ceea65579fdd1181dfa103cc437d8e19d87239683cf5040e633211387ccf 0.0s done
#16 exporting config sha256:9fcc6de03066ac1482b830d5dd7395da781bb69fe8f9873e7f9b456d29a9517c 0.0s done
#16 exporting manifest sha256:29666fb23261b1f77ca284b69f9212d69fe5b517392dbdd4870391b7defcc116 0.0s done
#16 exporting config sha256:92cbd688027227473d76e705c32f2abc18569c5cfabd00addd2071e91473b2e4 0.0s done
#16 exporting manifest list sha256:f3b552e65508d9203b46db507bb121f1b644e53a22f851185d8e53d873417c48 0.0s done
#16 ...
#17 [auth] <username>/<image>:pull,push token for registry-1.docker.io
#17 DONE 0.0s
#16 exporting to image
#16 pushing layers
#16 pushing layers 3.6s done
#16 pushing manifest for docker.io/<username>/<image>:latest@sha256:f3b552e65508d9203b46db507bb121f1b644e53a22f851185d8e53d873417c48
#16 pushing manifest for docker.io/<username>/<image>:latest@sha256:f3b552e65508d9203b46db507bb121f1b644e53a22f851185d8e53d873417c48 1.4s done
#16 DONE 5.6s
Note
-
<username>
must be a valid Docker ID and
<image>
and valid repository on
Docker Hub.
-
The
--platform
flag informs buildx to create Linux images for AMD 64-bit,
Arm 64-bit, and Armv7 architectures.
-
The
--push
flag generates a multi-arch manifest and pushes all the images
to Docker Hub.
Inspect the image using
docker buildx imagetools
command:
$ docker buildx imagetools inspect <username>/<image>:latest
Name: docker.io/<username>/<image>:latest
MediaType: application/vnd.docker.distribution.manifest.list.v2+json
Digest: sha256:f3b552e65508d9203b46db507bb121f1b644e53a22f851185d8e53d873417c48
Manifests:
Name: docker.io/<username>/<image>:latest@sha256:71d7ecf3cd12d9a99e73ef448bf63ae12751fe3a436a007cb0969f0dc4184c8c
MediaType: application/vnd.docker.distribution.manifest.v2+json
Platform: linux/amd64
Name: docker.io/<username>/<image>:latest@sha256:5ba4ceea65579fdd1181dfa103cc437d8e19d87239683cf5040e633211387ccf
MediaType: application/vnd.docker.distribution.manifest.v2+json
Platform: linux/arm64
Name: docker.io/<username>/<image>:latest@sha256:29666fb23261b1f77ca284b69f9212d69fe5b517392dbdd4870391b7defcc116
MediaType: application/vnd.docker.distribution.manifest.v2+json
Platform: linux/arm/v7
The image is now available on Docker Hub with the tag
<username>/<image>:latest
.
You can use this image to run a container on Intel laptops, Amazon EC2 Graviton
instances, Raspberry Pis, and on other architectures. Docker pulls the correct
image for the current architecture, so Raspberry PIs run the 32-bit Arm version
and EC2 Graviton instances run 64-bit Arm.
The digest identifies a fully qualified image variant. You can also run images
targeted for a different architecture on Docker Desktop. For example, when
you run the following on a macOS:
$ docker run --rm docker.io/<username>/<image>:latest@sha256:2b77acdfea5dc5baa489ffab2a0b4a387666d1d526490e31845eb64e3e73ed20 uname -m
aarch64
$ docker run --rm docker.io/<username>/<image>:latest@sha256:723c22f366ae44e419d12706453a544ae92711ae52f510e226f6467d8228d191 uname -m
armv7l
In the above example,
uname -m
returns
aarch64
and
armv7l
as expected,
even when running the commands on a native macOS or Windows developer machine.
Support on Docker Desktop
Docker Desktop provides
binfmt_misc
multi-architecture support, which means you can run containers for different
Linux architectures such as
arm
,
mips
,
ppc64le
, and even
s390x
.
This does not require any special configuration in the container itself as it
uses qemu-static
from the
Docker for Mac VM
. Because of this, you can run an ARM container,
like the
arm32v7
or
ppc64le
variants of the busybox image.